
Scientific Visualization, 2018, volume 10, number 1, pages 110 - 127, DOI: 10.26583/sv.10.1.09

Aiwlib library as the instrument for creating numerical
modeling applications

A. V. Ivanov1, S. A. Khilkov2

Keldysh Institute of Applied Mathematics

1 ORCID: 0000-0001-5132-3748, aivanov@keldysh.ru
2 ORCID: 0000-0003-2702-5630, khilkov.s@gmail.com

Abstract
Aiwlib library is a library for C++11 and Python languages, which is aimed for the de-

velopment of high-performance computing numerical simulation applications running un-
der GNU/Linux OS. It also provides means for batch calculations, search through results
using multiparametric filters and visualisation of results.

The visualization is supported of data given on uniform rectangular grids of high dimen-
sion in the form of two-dimensional slices with an effective change in the position and orien-
tation of the slice; data given on spherical grids; arbitrary surfaces in three-dimensional space
defined on triangular unstructured grids; voxel visualization of data given on uniform three-
dimensional grids; visualization of the magnetization distribution under micromagnetic or
atomistic modeling.

The library was applied for development of software packages for seismic, plasma physics
and turbid medium optics. It was also turned useful for solving fundamental and applied
problems concerning the magnetic materials study and creating spintronics devices, simula-
tion of field development for the oil reservoir that contains kerogen with in-situ combustion
taken into account, simulation of poroelastic medium problems and hydraulic fracture prob-
lems.

Keywords: numerical simulation, visualization, HPC applications.

Aiwlib library is a library for C++11

and Python languages, which is aimed for
the development of high-performance
computing numerical simulation applica-
tions running under GNU/Linus OS. It
also provides means for batch calculations,
search through results using
multiparametric filters and visualisation of
results.

The visualization is supported of data
given on uniform rectangular grids of high
dimension in the form of two-dimensional
slices with an effective change in the
position and orientation of the slice; data
given on spherical grids; arbitrary surfaces
in three-dimensional space defined on
triangular unstructured grids; voxel
visualization of data given on uniform
three-dimensional grids; visualization of
the magnetization distribution under
micromagnetic or atomistic modeling.

The library was applied for development
of software packages for seismic, plasma

physics and turbid medium optics. It was
also turned useful for solving fundamental
and applied problems concerning the
magnetic materials study and creating
spintronics devices, simulation of field
development for the oil reservoir that
contains kerogen with in-situ combustion
taken into account, simulation of
poroelastic medium problems and
hydraulic fracture problems.

The work was supported by RSF (project
№15-11-00021).

1. Introduction
There are at least three different ways to

speed up a process of development of an
numerical simulation application: choosing
the right architecture, using high level li-
braries and metaprogramming (code gen-
eration), with help of computer algebra
systems among other things.

Last decades shown that development
on interpreted languages which has dy-

https://doi.org/10.26583/sv.10.1.09
mailto:aivanov@keldysh.ru
mailto:khilkov.s@gmail.com

namic typing (so called "duck typing", for
example Python, Ruby) is faster by an or-
der of magnitude than development with
aid of traditional compiler-based languages
with static typing (C/C++, Pascal, Fortran).
On the flip side, the resulting application
performance is low, Python application is
10-30 times slower than C++ one depend-
ing on the problem type.

A numerical simulation program usually
can be divided into two parts the computa-
tional core and the interface. The computa-
tional core is written with care. Its modifi-
cations are arguably rare since it has to
provide the best performance. Yet the in-
terface is modified continually to match
different setups and its performance is of
no importance since the most part of com-
putational costs fall on the computational
core activities.

The ideal architecture for the numerical
modelling application is the combination of
the interface written an interpreted lan-
guage with dynamic typing (we chose Py-
thon [1, 2]) and the computational core
written in an traditional compiler-based
language which uses the static typing (ai-
wlib is written in C++11). To connect the
parts we are using SWIG tool [3]. The core
is compiled as the shared library and is im-
ported to python as custom module. This
approach, for one, allows us to solve the
calculation parameters assigning problem
efficiently. In the simplest case parameters
values are listed in the control file, which is
written in Python, and they are edited on
an as-needed basis. The aiwlib library has
its own build system based on GNU Make
[4]. It provides short (3-4 lines) user Make-
file for such projects.

There are packages based on a similar
architecture. A well-known system Matlab
uses its own interpreted language, which is
focused on implementing complex algo-
rithms in terms of linear algebra, carrying
out calculation and visualizing the results.
However, it is possible to implemented an
individual function in the C language and
load it as shared library. The numpy library
includes a number of algorithms applied

mathematics written in C and advanced
visualization tools that are called from Py-
thon.

However, the Matlab system is commer-
cial (with a fairly expensive license). On top
of that implementing an C extension to
Matlab is not an simple task. The numpy
library is widely used (and in fact it is a
full-fledged replacement for Matlab), but
the overhead for implementing complex
algorithms only in Python are too high,
even if we take the calls of high-level func-
tions on C into account. Unlike analogues,
the aiwlib library instantiates main classes
and function of the kernel written in C++11
to Python, which makes it possible to use
almost the same code in both languages,
choosing the optimal decomposition of the
application from the ratio "code perfor-
mance / development speed" point of view.

There is a persistent myth that numeri-
cal modeling applications written in C++,
are inferior in performance to applications
written in Fortran. In reality, it is much
easier to write inefficient applications in
C++ than in Fortran, but obeying several
simple rules [5], erase the difference in
performance. On the contrary, quite a few
tools, provided to the developer in modern
C++ language, significantly speed up effec-
tive implementation of complex computa-
tional algorithms. In particular, LRnLA
(locally recursive non-local-asynchronous)
algorithms, which provide extremely high
performance in problems of numerical
simulation [6, 7, 8, 9], were implemented
on combination of C++ and Python lan-
guages with heavy use of the C++ tem-
plates mechanisms.

The choice of C++11 standard in aiwlib
is explained by the fact that, on the one
hand, this standard gives a number new
features (for example, variadic templates),
and on the other hand, it is already well es-
tablished and is supported by quite old
compilers on most current clusters and su-
percomputers.

The second way to accelerate the crea-
tion of a numerical simulation applications
is making use of high-level libraries. At the
moment there is a huge number of libraries
that implement both complex data struc-
tures (containers, for example, lists and
various trees), and computational algo-
rithms (SLAU solvers, fast Fourier trans-
form, etc.). Even if we limit ourselves to

C++ libraries we can mention boost, Eigen,
gmm++ and MTL4 as examples. The core
of the aiwlib library is close to the library
blitz++.

The aiwlib library complements the tra-
ditional functionality of similar libraries
with developed debugging tools, elements
of linear algebra with a number of specific
operations, various containers (including
arrays of arbitrary dimension based on the
Morton Z-curve and unique spherical grids
based on the subdivision of a dodecahe-
dron), means of carrying out mass calcula-
tions and developed means of visualization.

Visualization tools consist of the shell
for a standard gnuplot plotter,

allowing with minimum effort to build a
print quality graphic, and a number of spe-
cific utilities for visualizing data on a
spherical grids,

surfaces, distributions of magnetic mo-
ments, etc. Unlike standard tools

(eg paraview), aiwlib library viewers
have a relatively poor window interface
(which is partly compensated by the devel-
oped command-line interface) and are fo-
cused on handling large amounts of data.

The third way to accelerate the creation
of numerical simulation applications is the
metaprogramming (automatic code gener-
ation) and various systems computer alge-
bra [10, 11]. There are some tools in the ai-
wlib library for implementation of this ap-
proach (in particular, converting algebraic
expressions from Python language to
gnuplot, C++ and LaTeX formats is used in
the gplt utility), but this is rather complex
topic and is beyond the scope of this arti-
cle.

The previous version of the library aivlib
(with the letter "V", [12]) was successfully
developed for over ten years, until it be-
came clear that the elimination of the ac-
cumulated list of drawbacks requires
breaking of the backward compatibility.
This article is devoted to the second ver-
sion of the library which is referred to as
aiwlib (with the letter "W", [13]). Versions
are incompatible but they can be applied to
one project simultaneously (from the point
of view of the compiler those are different
libraries).

2 Library core

2.1 Debugging tools
The aiwlib library provides advanced

debugging tools which take into account
the specific nature of numerical simulation
applications. The <aiwlib/debug> header
file in C++ consists of init_segfault_hook()
function definition, the debug output mac-
ros WOUT and WERR, the macro

WCHK, checking the values of expres-
sions for nan and inf, WEXT and WEXC
macros, which allow print information
from the stack when an exception is raised
or a segmentation fault occurred, and
WASSERT and WRAISE macros to trigger
an exception.

All macros print messages, which men-
tion the source file, line number and func-
tion, to the standard output stream or the
standard error stream. The macros (except
the WRAISE macro) only work if the EBUG
macro is defined, for example, by using the
"-DEBUG" compilation option or the "de-
bug=on" argument of make, otherwise, the
macros are ignored by the compiler. The
macros listed can take as arguments an ar-
bitrary number of expressions. Here is the
fragment of code

int a = 1; double b = 2.5; WOUT (a,
a + b, a * b + 3);

which after compiling and running will
print to the standard output stream the
text

test.cpp main () 14: a = 1, a + b =
3.5, a * b + 3 = 5.5

The WERR macro outputs information

to the standard error stream. It accepts any
expression which result can be printed to
the stream std::ostream with the aid of the
operator "<<".

The WCHK macro checks the values of
its arguments (which should be the results
of evaluation of floating point number ex-
pressions) on the values of inf and nan. If
at least one argument did not pass the
check, an error message is displayed, and
an exception is raised.

Macros WEXC and WEXT form special
objects based on templates std::tuple on
the stack. Those objects contain copies of

the arguments, that practically does not
affect the performance. When the stack
frame is destroyed (for example, the nor-
mal return from the function) objects with
copies of macro arguments are destroyed
without side effects. When an uncaught ex-
ception is raised or segmentation fault oc-
curred the accumulated information is
printed to the standard error stream. The
WEXC macro is thread ignorant thus it
may be used in multithreaded mode, but it
does not handle segmentation faults.
WEXT macro works similarly, but it regis-
ters objects in the global table, hence it is
thread unsafe. If an segmentation fault oc-
curs information from all the objects regis-
tered in the global table is printed to the
standard error stream. To enable the pro-
cessing of segmentation faults you must
call the function

init_segfault_hook();
This approach is often more convenient

than a memory dump analysis with the
help of debugger. To begin with, the de-
bugger can not show the history of changes
for arbitrary variable, while the WEXC and
WEXT macros can (this requires calling
several macros). Secondly, when you run
your application on a supercomputer, the
amount of memory to dump may become
too large for analysis.

When the processing of segmentation
faults is enabled, a call stack is also dis-
played. It can be analyzed by the standard
addr2line tool.

The first argument for the WASSERT
macro should be a condition. If its value is
false, an exception is raised.

2.2 I/O Streams
The aiwlib library provides I/O streams

(abstract base class aiw::IOstream and its
successors aiw::File and aiw::GzFile),
based on the standard FILE streams and
the zlib library. Aiwlib streams differences
from standard std::iostream streams are
larger performance (due to the elimination
of an extra buffering), the availability a
type-safe analog of the printf method, the
ability to map fragments of a file with au-
tomatic garbage collection and operations
"<" and ">", which are overloaded as bina-

ry IO operations for all current data types
and containers, including STL types.

2.3 Elements of linear algebra
The aiwlib library defines the template

for the vector aiw::Vec<D, T=double>,
parametrized by dimension (length) D and
cell type T (double is default). For this type
traditional operations addition, subtrac-
tion, scalar multiplication and comparison
operations (for an effective checking if the
point lies in a D-dimensional parallelepi-
ped), componentwise multiplication, a
module and maximum calculations and so
on are overloaded. The Vector type with int
as the cell type has an alias named
aiw::Ind<D>. It is used as an index when
accessing cells of multidimensional grids.

A multidimensional area traversal oper-
ation (D nested loops) is implemented:

aiw::Ind<D> N = ...; // size of an
area

for (Ind <D> i; i ^= N; ++ i) {...}
Typically, instantiating C++ templates

to Python with SWIG requires a special
SWIG instruction for each instance of the
instantiation. The Instantiation is accom-
panied by the automatic generation and
the compilation of the large amount of C++
code, while the SWIG capabilities to handle
C++11 standard extensions are limited.
However, any alternative which allows
binding C++ and Python is significantly
harder for an end user. Since the internal
representation of data in objects of the type
Vec<D, T> is trivial, the aiwlib library im-
plements a special mechanism for instanti-
ating such object, based on the interaction
with the SWIG type control system. Even-
tually for vectors no instantiation is re-
quired: in Python it is enough to import a
module aiwlib.vec to get transparent access
to objects Vec<D, T> (for all current types
T) which are present in the C++ code with
all their capabilities.

In order to instantiate containers de-
scribed further (multidimensional and
spherical grids) to Python, it is necessary to
assemble a separate module for each type
and dimension using the make utility, for
example

make MeshF3-float-3

leads to the assembly of the module ai-
wlib.MeshF3, containing a three-
dimensional grid with float as the cells
type.

2.4 Multidimensional Grids
(Arrays)

The most efficient approach for imple-
menting multidimensional arrays is to cre-
ate in memory a traditional one-
dimensional array (vector) and emulate the
multidimensionality with aid of an address
arithmetic. For this to happen it is neces-
sary to define a one-to-one correspondence
between the index of the cell of the multi-
dimensional grid ...),(= yx III and the off-

set in one-dimensional array f.

Obviously, there are many different so-
lutions to this problem, however the tradi-
tional way is the dictionary order of cells

...,= zyxyxx INNINIf

 (1)

where the x-axis is the "fastest", the data
in memory is localized along the x-axis.

There are different axis orders available,
for example, in traditional multidimen-
sional arrays of language C of the form T
arr [Nx][Ny]... the x axis is the "slowest".
In general case, the traditional solution can
be written as

 f p I S
0

= , (2)

where 0p is the offset of the zero cell, S

is the offset vector of the cell with the index
(1,1,1...).

a. b.

Fig. 1. Traditional traversal of multidimensional array (a) and traversal based on Morton
Z-curve (b)

If a multidimensional array is a D-dimensional hypercube with side size equals R2 cells the
traditional approach is reduced to constructing the offset f in the form

D групп бит
D

R R kD R R R

x y z k z z y y x x

k R бит R битR бит

f I I I I i i i i i i

1

0 2 1 0 1 0 1 0

=0

= 2 2 2 ... = 2 = ,

 (3)

where k is the coordinate axis number (from 0 to D), l

ki is the l -th bit in kI . One can sug-

gest alternative order f
R групп бит

R R R

D y x D y x D y x

D бит D бит D бит

f i i i i i i i i i

1 1 1 1 1 1 0 0 0

1 1 1= ,

 (4)

resulting in an order based on a fractal
Z-curve of Morton (Lebesgue) [14], Fig. 1.

In contrast to the traditional traversal,

one based on Z-curve significantly facili-
tates the construction of various adaptive-
recursive grids and ensures high locality of
data (the nearest neighbors in the configu-
ration space, as a rule, are located close in
memory). That may increase the efficiency
of calculations in the so-called memory-
bound problems [7, 8]. A fixed set of array
sizes and low random access efficiency are
drawbacks of the Z-curve traversal. The
calculation of the offset f by the multivari-
ate index of cell I is an fairly expensive op-
eration from the computational cost point
of view.

The aiwlib library provides two array
classes Mesh<T, D> and ZCube<T, D>, pa-
rameterized by the type of the cell T and
the number of dimensions D of the array.
The Mesh class implements the traditional
traversal and ZCube implements traversal
based on the Z-curve. Both classes have
random access operator by multidimen-
sional cell index (an object of the type
aiw::Vec<D, int>); efficient traversal for
the array and efficient access to the nearest
neighbors of the cell, including the periodic
boundary conditions option; adjustment of
uniform grids (limits and step) and loga-
rithmic scale on some axes, allowing to cal-
culate the coordinates of cell centers and
cell corners in configuration space; piece-
wise-constant, linear, local cubic and B-
spline interpolation (can be adjusted inde-
pendently for individual axes); transposi-
tion (change of order) and flip for axes; ef-
ficient saving data to disk and loading data
from the disk in binary and text formats in
order to analyse or to visualize it later.

In addition, the Mesh class also allows
you to cut rectangular subdomains

(grids of the same type, but smaller) and
build slices (meshes with less number of
dimensions). Any grid conversion (trans-
posing, axis flipping or subdomain and
slice cutting) returns a new grid object
which provides alternative access to the
same data area. The memory allocation
and move operations for large amounts of
data are not performed. In addition to in-
crease of the performance, that introduces
extra opportunities for data processing, for
example, a two-dimensional section of a
three-dimensional grid may be filled with
new data, which will lead to a change of the
original three-dimensional grid.

Furthermore, if necessary, it is possible
(by connecting the appropriate header file
meshop) to overload the "unary minus"
operator, binary +, -, *, /, ^ (like in degree)
operators and functions abs, acos, asin,
atan, ceil, cos, exp, fabs, floor, log, log10,
sin, sinh, sqrt, tan, tanh, atan2, fmod, pow
over instances of Mesh <T, D> classes.

Expressions of arbitrary complexity are
allowed, so they may contain overloaded
operations and functions whose operands
are instances of Mesh<T, D> classes or any
other data for which the expression will
make sense if the instances of classes
Mesh<T, D> are substituted with values
from one cell (type T).

The expression itself does not lead to
any action unless the operator "<<==" oc-
curred, the left operand of which must be
an instance of the class Mesh<T, D> and
the right is the expression. In this case, a
cycle is started on grid cells, on the left
hand side of the operation "<<==", for
each grid cell on the left the result of the
expression on right hand side is calculated
and is written separately. The implementa-
tion is close to the grid-operator approach,
developed, for example, in [15].

2.5 Spherical meshes

 0=R 1=R 2=R

Fig. 2 Spherical mesh based on the recursive subdivisions of the dodecahedron with differ-

ent numbers of division steps (ranks).

The aiwlib library provides a mesh on a
sphere composed of almost regular

triangles constructed by recursive de-
composition of the dodecahedron [16, 17],
Fig. 2. Compared to traditional spherical
coordinates with two strong singularities
on poles, a spherical mesh based on a do-
decahedron has 12 weak inhomogeneities
corresponding to centers of the dodecahe-
dra faces. At these points the mesh nodes
are incidental to five cells, in contrast to six
for all the remaining nodes, and these cells
are also most distorted (one of the angles is
72° instead of 60°).

The mesh contains 60*4^R cells and

30*4^R+2 nodes, where R≥0 is the rank of
the partition. A search for the cell into
which a three-dimensional vector points
algorithm, the operations for traversing the
mesh and accessing to the neighbors of the
cell, the algorithms for calculation the co-

ordinates of vertices, centers and areas for
cells are efficiently implemented.

The mesh is provided as the Sphere<T>

template, parameterized by a cell type, The
template also includes methods for writing
and reading data in a binary format. In ad-
dition, there is an utility for visualizing
such data in the library. In numerical simu-
lation a spherical mesh is usually a conven-
ient substitute for traditional spherical co-
ordinates, apart from the absence of strong
singularities, a spherical mesh with the
same fineness (maximum cell size) re-
quires approximately half the number of
cells due to absence of condensation of
nodes near the poles.

Data from a spherical mesh can be saved

to and loaded from a disk in a binary for-
mat, and can also be visualized using the
uplt viewer described below, Fig. 3.

a b

c d

Fig. 3. Visualization of the distribution function of magnetic moments on a spherical mesh

of the third rank in the coordinates θ,φ without interpolation (a, b) and with linear interpola-
tion in cells (c, d) with aid of Mercator projection (a, c) and with aid of Mollweide projection

(b, d)

3 The batch start calcula-
tions and analysis of results

While performing numerical simulation,

the results of each calculation should be
saved with the information on the calcula-
tion parameters used and algorithms. Oth-
erwise, the results tend to turn into an ab-
stract picture after a while. If there are
quite a number of methods and libraries to
store parameters, yet saving of an algo-
rithm is a problem, and the only acceptable
solution for it today is to store the source
code of the application as well.

When performing batch calculations (for
example, in the analysis of the behavioral
dependence of a device on several parame-
ters and the calculation of its phase dia-
grams) requires a mechanism, which al-

lows us to start the application multiple
times with different parameters automati-
cally. It also preferable to have control over
the allocation of resources within the
framework of local network or a cluster.

To analyze the results, a multiparamet-
ric search through the calculations is re-
quired. Thus the results of calculations
should be kept in special, ordered way. It
should be possible to search for specific
versions of the source code. This problem
may be solved manually, for example, plac-
ing the results of calculations on a well
structured directory tree, but this approach
requires a strict self-discipling of a user
and is tangled by the fact that during the
calculation the order criteria may expand
and change dramatically.

For large series of calculations, a neat
solution to the above problems may take
considerable amount of time and effort.
Several working groups have developed
their own libraries, providing the means to
simplify the process of writing the envi-
ronment [18, 19, 20], but there is no uni-
fied approach for the problems.

The RACS system described in this sec-
tion (Results & Algorithms Control System,
the system to control results and algo-
rithms) provides:

• setting the calculation parameters at
startup for applications written in Python
and C++;

• automatic saving parameters and
source codes for each calculation;

• batch execution of calculations (cycled
by parameter values) and load balancing
both on local machines and on clusters
with MPI;

• control points manipulation for C++
applications, even on clusters with MPI;

• advanced tools for multi-parametric
searches, analysis and results processing.

The following points were in focus while

the RACS was developed:
• easy usage (minimal modification of

the debugged code is required);
• concise and intuitive syntax when

starting calculations;
• the ability to process results using the

operating system and third-party utilities
without losing the data integrity;

• Integration with other utilities, print-
ing the data in gnuplot format with gplt
headers, reading metainformation about
calculations by other utilities.

Even for a low-skilled user, RACS auto-
matically provides necessary "minimum" of
the calculation self-discipline (storing of
source codes and

parameters). As a result, the user is able
to fully concentrate on

dealing with his problem.
While developing the RACS system, spe-

cial effort was taken to facilitate the appli-
cation of RACS on the finished program.
RACS is written in Python and is primarily
aimed on applications, written in C++
(high-performance computing core) and
Python (upper control layer of the applica-

tion and the interface parts) linked togeth-
er by the SWIG utility [3]. In order to start
calculations, RACS can be attached to ap-
plications written only in C++ without us-
ing Python.

As a rule, the calculation starts from the
current (working) directory containing the
source codes of an application, main exe-
cutables in Python or C++, etc. For each
calculation in repository (some directory)
an unique directory is created. Calculation
parameters, source codes and simulation
results are stored there. The set of calcula-
tion parameters in form of a dictionary is
saved as a file .RACS located in the calcula-
tion directory. The format of .RACS is de-
fined by the standard Python module
named pickle.

In addition to the .RACS file .src.tgz file
may be created in the unique calculation
directory (archive containing the source
code of the application which performed
the calculation) and in case of "daemon-
ized"

calculation the logfile (standard output
and standard error streams combined) is
also placed there.

The repository can be structured in an
arbitrary manner, i.e. it is the directory tree
where calculations are grouped according
to user requirements (for example, by val-
ues of key parameters).

Individual calculations and repositories
can be moved by OS tools, sent over the
network, etc.

The application is started as command
line instruction, but loading the RACS sys-
tem adds extra command-line arguments
which make it possible to change the calcu-
lation parameters, to start batches and to
change the service parameters of the RACS
system. It is possible to start calculations
batch looping through the list of the pa-
rameters values and to balance the com-
puter load induced automatically.

In order to analyze the simulation re-
sults the racs command-line tool is intro-
duced. There were attempts to create a ver-
sion with a GUI in 2010. However, it
quickly became clear that the GUI does not
provide any advantages, but it complicates
the interaction with other command-line

utilities essentially. It also introduce prob-
lems with remote work through ssh.

The tool allows you to display the dic-
tionary of parameters for a separate calcu-
lation (contents of .RACS file), to select the
calculations that meet different criteria, to
print selected results in various formats, to
modify selected calculations, or to delete
them.

In fact, calculations placed under RACS
form a non-relational database, where in-
dividual calculations are the records in the
database, and repositories are the tables.

The racs tool is able to jointly process
multiple repositories. Repositories are pro-
cessed sequentially (in the order in which
they were mentioned). Results are mergeed
into a common selection (set of calcula-
tions).

The racs tool gives the user broad op-
portunities for multiparametric searching,
analysing, joint processing and visualizing
the large volumes of numerical simulation
results. To date (the first versions appeared
in 2003, the first publication [21] in 2007),
RACS has proven itself useful to organize
large series of calculations in various fields,
i.e. seismic, modeling of the field develop-
ment for kerogen-containing reservoirs
with in-situ combustion taken into ac-
count, modeling of magnetic systems [22]
and the development of spintronics devices
[23], gasdynamics of the combustion [24],
the study of resonant properties of nonlin-
ear systems [25], etc.

4 Visualization utilities

4.1 The gplt tool, the typo-
graphic quality plotter based on
gnuplot

The gnuplot application is one of the
oldest visualization tools attributed to GNU

project. Despite a number of shortcomings
(primarily the low performance, especially
for surface plots) gnuplot is still popular
due to the flexibility, a variety of output
formats and good graphs appearance. The
plotting graph of typographic quality (with
the correct fonts, axes labels, etc.) requires
quite a lot of work. The gplt tool parses
command-line arguments, generates a set
of instructions, and runs make. Since the
fact that many necessary parameters are
set by default, and due to the concise syn-
tax, a minimum of actions (keystrokes) is
required to obtain a typographic quality
plot in .pdf format with LaTeX fonts and
formulas. In addition gplt-file containing
the arguments of the corresponding call is
formed for each plot. One can edit the file
to change the plot if it become necessary.

The gplt tool is written in Python. It
reads the comments in .dat files (text files
with data to render). Special Comments
(starting with #:) allows you to specify
names for data columns, declare additional
numerical constants, customize the column
names displayed on plots for different out-
put formats. The gplt tool is capable of us-
ing wide variety of expressions (Python
code snippets) containing the column
names for plotting. The gplt utility can also
use metainformation (contents of .RACS
files) about calculations in expressions
while plotting graphs for calculations con-
trolled by RACS system. The expression
may be converted through abstract syntax
tree in make, LaTeX, EPS, and other for-
mats.

4.2 The uplt tool, the visualization of data on multidimensional
and spherical grids as a set of two-dimensional slices

Fig. 4. Vertical slice of the depth-velocity model for well known international synthetic
seismic dataset SEGsalt.

The uplt viewer is used to visualise the
scalar functions of the form f(x, y), defined
on uniform rectangular meshes or spheri-
cal meshes stored in the binary formats of
the library aiwlib, Figure 4. The viewer is
implemented in C++11 and Python lan-
guages. It uses Tkinter library and Python
Image Library. In uplt viewer it is possible
to adjust the palette and limits of the image
in many ways. Uplt also supports logarith-
mic scales for any axis and different inter-
polation types. When the data written in
one file as the sequence of independent
frames (each frame contains data from one
mesh), viewer allows you to navigate
through the frames. For uniform meshes
with number of dimension greater than
two, two-dimensional slices are displayed
instead of the full mesh. However the view-

er makes it possible to select the orienta-
tion and position of the cut. It is possible to
start animation (sequential drawing of
files, frames in one file or movement of a
slice through one frame) and automatic
video compiling with the ffmpeg utility.

Rendering options are set in two ways

from the graphical user interface and when
the application starts with help of com-
mand line arguments. Uplt also supports
PDF as image output format.

Despite the fact that the viewer does not

utilise a graphics accelerator,
viewer achieves acceptable drawing

speed for large (gigabytes or more) vol-
umes of data.

4.3 The utility splt, the visualization of surfaces defined by un-
structured triangular grids.

a b c

Fig. 5. Error level on an unstructured tetrahedral grid during the evolution of a surface
with a movable boundary (a) and a wave front in the form of a surface during migration on

SEGsalt international seismic dataset (b) and a so-called "wire" form for the same wave front
(c)

The three viewers described below (splt,
mplt and fplt) are built with help of a sepa-
rate package AbstractViewer, which is not
included in the aiwlib library. The package
is focused on developing new 3D viewers in
C++ and Python languages using OpenGL
library and glut. It also permits to embed
viewers in numerical simulation applica-
tions for displaying and analysis results
during the calculations on GPGPU. The
package was developed by S. Khilkov and is
distributed under the GPL-v3 license.

Due to the efficient use of a discrete vid-
eo card, viewers have high performance.
The interface is made in a deliberately
"Spartan" style, the manipulator "mouse"
allows you to rotate the image, all other ac-
tions are performed with aid of hotkeys
and command line interface in the termi-
nal. The command line uses the readline
library, which provides autocomplete fea-
ture for the input buffer and access to the
commands history. Terminal commands
are executed in Python language, which
makes it possible to to run scripts for gen-
eration a series of images, creation of the
animation, etc.

All viewers supports palettes switching
and color range limits adjustments. They

implement clipping planes, scaling and ro-
tating transformations of the image.

The splt viewer can display quite an ar-

bitrary surface defined by an unstructured
triangular grid (Figure 5), while tetrahedral
grids are specified as sets of faces. Grids
are stored in a binary format of aiwlib li-
brary. An arbitrary number of independent
frames (instant grid states) could be placed
in a single file consecutively. Grids in dif-
ferent frames may have different numbers
of nodes and vertices. Viewer implements
an efficient switching between frames.

Arbitrary data sets of type float4 may be
associated with vertices and cells of a tri-
angular grid (for example, coordinates and
components are associated with vertices
speed, and density is defined at cell cen-
ters). Each data field has an unique text
name. During the visualization, it is possi-
ble to select arbitrary combinations of
fields, the values of three fields are plotted
along the axes xyz, the value of the fourth
field is shown as the color. It uncovers
broad potential for visualization and analy-
sis of complex data, the detection of vari-
ous dependencies and then studying their
evolution in results of calculations.

4.4 mplt tool, the visualization of magnetic moments distributions
and vector fields

a b

Fig. 6. Distribution of magnetic moments in the cylinder made of antiferromagnetic mate-
rial which has incomplete fcc lattice (a) and for a cube made of ferromagnetic material with

bcc lattice (b)

In order to visualize the distribution of
magnetic moments, the aiwlib library pro-
vides the mplt viewer. The magnetization
of a single cell/atom is represented by red
and blue sphere (similarly to compass ar-
row) which blue pole is oriented along the
magnetic moment direction. A three-
dimensional array of such spheres conveys
the distribution magnetization on the sur-
face of the sample well (inner spheres are
virtually not visible, Fig. 6).In order to
study the magnetization distribution with-
in the sample it is necessary to use slices
and/or cut-off planes.

The viewer works with the data stored in

a special binary format of the aiwlib li-
brary. The simulation results are stored in
one file, which consists of a header describ-
ing the spatial distribution of the magnetic
moments and data frames after it. Each

frame contains the values of the magnetic
moments at some point in time. To store
the orientation of a single magnetic mo-
ment one can use either a vector of three
float4 numbers (12 bytes), or the cell num-
ber on the spherical grid built with help of
a recursive decomposition of a dodecahe-
dron of the rank five (2 bytes, the accuracy
is approximately 1°). The viewer efficiently
displays arrays of up to 10^9 magnetic
moments, the only limit is the video
memory size.

4.5 fplt tool, the voxel visualization of three-dimensional uniform
grids

Fig.7. Three-dimensional image of a velocity-depth model of a known international syn-

thetic seismic dataset SEGsalt.

The fplt viewer provides the voxel visu-
alization of uniform 3D meshes saved in
aiwlib library formats, figure 7. A pixel
shader traces rays with an increment of the
order around the grid cell size, taking
transparency into account. The initial value
(color) is considered invisible (completely
transparent), the tracing of each ray is
completed after achieving a given value in
the pixel α-channel (default value is 0.95)
[26] or if the ray escapes the data area.

5 Other modules
The aiwlib library has a number of addi-

tional modules for solving various specific
tasks.

The construction of isolines which is
implemented in C++; control points for
stopping and continuing the calculation;
serialization of data in the pickle format;
the discretization of a Voronoi partition;
means to collect and to store the metain-
formation about custom data types (struc-
tures) to use in postprocessing of calcula-
tions results; some elements of linear alge-
bra and analytical geometry, including the
projection construction and rotation opera-

tions; means for reading/writing test con-
figuration files and configuring user ob-
jects.

An efficient way to parse the command-

line arguments, allowing you to create your
DSL (Domain-Specific Languages) imple-
mented in Python; high-level module to
work with date and time; the automatic de-
tection of files containing the source code
of the application written in C++ and Py-
thon languages, combined by the SWIG
utility and compiled with make; the cost
effective protocol for transferring data
through sockets and high-level tools for
developing simple network client-server
applications; the conversion algebraic ex-
pressions from the Python language format
into other formats with aid of the abstract
syntax tree.

6 Conclusion
The first version of the aiwlib library

was written in 2008, and some of its parts
(the RACS system and the gplt tool) ap-
peared in 2003. Over the years the library
code evolved dramatically. The kernel code

became simpler, smaller, more stable, and
its capabilities significantly expanded.

The aiwlib library and its previous ver-

sion aivlib were used successfully in a
number of projects: development software
packages for the seismic prospecting [27,
28, 29], the physics of plasma [6] and the
optics of turbid media [30]; solutions to
fundamental and applied problems in ana-
lysing of magnetic materials and thecrea-
tion of spintronics devices [22, 23]; the re-
search on resonance properties of super-
paramagnets [25]; simulations of the gas
dynamics and the combustion [24], pro-
cesses of the field development for kero-
gen-containing oil reservoirs, taking the in-
situ burning into account, the material
degradation and the blistering in the sub-
surface layers under the influence of the
ion bombardment [31]; modeling of prob-
lems of poroelasticity and hydraulic frac-
turing of the formation [32]. In the mean-
time, the developed of visualization tools of
the library played the important role in
those projects. Due to efficient analysis of
simulation results, debugging code and the
adaptation of numerical schemes to the
problems in question were greatly simpli-
fied.

The core of the library is distributed un-
der the license Apache-2 (which permits to
apply it in commercial projects with a
closed source code), and visualization utili-
ties are distributed under the GPL-3 li-
cense.

The aiwlib library development is con-
tinuing actively. We are intended to in-
clude in the library modules for the CUDA
language, as well as templates (frame-
works) for creating magnetic materials
simulation codes and various variants of
FEM/XFEM, since we have acquired suffi-
cient experience in those areas.

References
[1] Guido van Rossum, and Fred L.

Drake, Jr. Jazyk programmirovanija Py-
thon. Russian translation by Denis S. Ot-
kidach. [An Introduction to Python]. 2001.
[In Russian]

[2] Mark Lutz. Programmirovanie na
Python [Programming Python] (Second
Edition). 2002 [In Russian]

[3] Simplified Wrapper and Interface
Generator http://www.swig.org

[4] Richard M. Stallman, Roland
McGrath. GNU Make: A Program for Di-
rected Compilation. Free Software Founda-
tion 2010

[5] Scott Meyers. Effective Modern C++.
O`REILLY. 2016.

[6] A. Yu. Perepelkina, I. A. Goryachev,
V. D. Levchenko CFHall Code Validation
with 3D3V Weibel Instability Simulation.
//Journal of Physics: Conference Series.
IOP Publishing. — 2013. — V. 441. — No. 1.
— P. 012014

[7] A. Yu. Perepelkina, V. D. Levchenko,
I. A. Goryachev Implementation of the Ki-
netic Plasma Code with Locally Recursive
non-Locally Asynchronous Algorithms. //
Journal of Physics: Conference Series. —
IOP Publishing. — 2014. — V. 510. — No. 1.
— P. 012042

[8] V. D. Levchenko, A. Yu. Perepelkina,
A. V. Zakirov. DiamondTorre Algorithm for
High-Performance Wave Modeling. //
Computation 4.3 (2016): 29.

[9] V. D. Levchenko, A. Yu. Perepelkina.
The DiamondTetris Algorithm for Maxi-
mum Performance Vectorized Stencil
Computation. //International Conference
on Parallel Computing Technologies.
Springer, Cham. — 2017. — P. 124–135.

[10] Tan Kiat Shi, Willi-Hans Steeb and
Yorick Hardy “Symbolic C++: An Introduc-
tion to Computer Algebra using Object-
Oriented Programming”, 2nd extended and
revised edition. Springer. 2000

[11] S.A. Zhdanov, A.V. Ivanov. Primer
avtomaticheskoj generacii koda prilozheni-
ja chislennogo modelirovanija dlja resheni-
ja uravnenija Fokkera–Planka [Example of
automatic code generation of numerical
modeling application for solution of the
Fokker–Planck equation]. // Matematich-
eskoe modelirovanie. — 2015. — V. 27. —
No 9. — P. 49–64. [In Russian]

[12] A.V. Ivanov, Khilkov S.A., S.A.
Zhdanov. The Aivlib library. http://a-
iv.ru/aivlib/

[13] A.V. Ivanov, Khilkov S.A. The Ai-
wlib library.

http://www.swig.org/

https://github.com/aivn/aiwlib/blob/mast
er/doc/aiwlib.pdf

[14] G. M. Morton. A computer Oriented
Geodetic Data Base; and a New Technique
in File Sequencing. — Ottawa, Canada:
IBM Ltd., 1966. — (Technical Report).

[15] M.M. Krasnov. Metaprogrammiro-
vanie shablonov C++ v zadachah ma-
tematicheskoj fiziki [Metaprogramming
C++ templates in mathematical physics
problems]. - Moscow: Keldysh Institute
Applide Mathematics. - 2017. - 84 P. [In
Russian]

[16] A.V. Ivanov. Kineticheskoe mod-
elirovanie dinamiki magnetikov [Kinetic
modeling of magnetic's dynamics]. // Ma-
tematicheskoe modelirovanie. — 2007. —
V. 19. — No 10. — P. 89-104. [In Russian]

[17] S.A. Khilkov, A.V. Ivanov Numerical
simulation of the magnetic moment distri-
bution evolution for superparamagnetic
materials //Preprints of Keldysh Institute
Applide Mathematics. — 2014. — No 29. —
P. 1-16.

[18] A.E. Alexandrov, A.V. Tyurin. Pro-
grammnye instrumental'nye sredstva dlja
organizacii vychislitel'nogo jeksperimenta s
cel'ju provedenija mnogovariantnogo ana-
liza [Software tools for computing experi-
ment aimed at multivariate analysis im-
plementation]. // Nauchno-tehnicheskij
vestnik informacionnyh tehnologij, mehan-
iki i optiki [Scientific and technical journal
of information technologies, mechanics
and optics]. - 2015. — V. 15. — No 5. — P.
907-915. [In Russian]

[19] Mnogovariantnyj analiz. Pro-
grammnyj kompleks dlja avtomatizacii
modelirovanija nestacionarnyh processov v
mehanicheskih sistemah i sistemah inoj
fizicheskoj prirody [The software for simu-
lation of non-stationary processes in me-
chanical systems and systems of other
physical nature].
http://www.laduga.ru/pradis/help/pradis/
PRADIS_Multivaria_analysis.ru.htm [In
Russian]

[20] B. M. Adams. at al. Dakota, A Mul-
tilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Esti-
mation, Uncertainty Quantification, and
Sensitivity Analysis: Version 6.6 User’s

Manual. —SAND2014-4633. — 2017. — P.
1–319. https://dakota.sandia.gov/

[21] A.V. Ivanov. Sistema kontrolja rezu-
l'tatov i algoritmov dlja zadach chislennogo
modelirovanija [Results and algorithms
control system for digital modeling tasks].
// Automation. Modern technologies. -
2007. - No 12. - P. 29-34. [In Russian]

[22] S.A. Khilkov, A.V. Ivanov, E.V.
Zipunova. Numerical simulation of strong-
ly nonequilibrium processes in magnets
based on physical kinetics equations //
Mathematical Models and Computer Simu-
lations. — 2016. — V. 8. — No 6. — P. 703-
708.

[23] I.M. Iskandarova, A.V.
Ivanov, A.A. Knizhnik, A.F. Popkov, B.V.
Potapkin, K.A. Zvezdin, P.N. Skirdkov, Q.
Stainer, L. Lombard, K. Mackay. Simula-
tion of switching maps for thermally assist-
ed mram nanodevices // Nanotechnologies
in Russia. - 2016. - V. 11. - № 3-4. - P. 208-
214.

[24] M.A. Liberman, M. Kuznetsov, A.
Ivanov A., I. Matsukov. Formation of the
preheated zone ahead of a propagating
flame and the mechanism underlying the
deflagration-to-detonation transition
//Physics Letters A. — 2009. — V. 373. —
No 5. — P. 501-510.

[25] S.A. Khilkov, A.V. Ivanov Re-
zonansnye svojstva superparamagnetikov
pri malyh amplitudah vneshnego peri-
odicheskogo polja [Resonant properties of
superparamagnetic materials for small
amplitudes of the periodic field] // Ma-
tematicheskoe modelirovanie. — 2015. —
V. 27. — No 8. — P. 96-110. [In Russian]

[26] CUDA Toolkit Documentation:
Volume Rendering with 3D Textures
http://docs.nvidia.com/cuda/cuda-
samples/index.html#volume-rendering-
with-3d-textures

[27] V. D. Levchenko, A.Yu. Perepyolki-
na, A.V. Ivanov, A.V. Zakirov, Т.V.
Levchenko, V.E.Rock. Vysokopro-
izvoditel'noe dinamicheskoe 3d modeliro-
vanie polnovolnovogo sejsmicheskogo pol-
ja v zadachah sejsmorazvedki. Opyt prime-
nenija v uslovijah razlichnyh sejsmo-
geologicheskih regionov [High-
performance dynamic 3d modeling of full-
wave seismic field in seismic survey prob-

https://github.com/aivn/aiwlib/blob/master/doc/aiwlib.pdf
https://github.com/aivn/aiwlib/blob/master/doc/aiwlib.pdf
https://dakota.sandia.gov/

lems. experience in various seismogeologi-
cal regions] // Supercomputer technologies
in the oil and gas industry. Mathematical
methods, software and hardware Materials
of scientific practical conference. - 2017. -
P. 49-53. [In Russian]

[28] A.V. Zakirov, V.D. Levchenko, A.V.
Ivanov, A.Yu. Perepelkina, Т.В. Levchenko,
V.E. Rock Vysokoproizvoditel'noe 3d mod-
elirovanie polnovolnovogo sejsmicheskogo
polja dlja zadach sejsmorazvedki [High-
performance 3d modeling of a full-wave
seismic field for seismic prospecting] //
Geoinformatics. - 2017. - No. 3. - P. 34-45.
[In Russian]

[29] A.L. Pleshkevich, A.V. Ivanov, V.D.
Levchenko, S.A. Khilkov. Mnogoluchevaja
3D glubinnaja sejsmicheskaja migracija do
summirovanija s sohraneniem amplitud
[Multibeam 3D depth seismic migration
before summation with preservation of
amplitudes] // Geophysics. specialist.issue
"50 years of CGE". - 2017. - P. 89-97. [In
Russian]

[30] A.V. Dmitriev, A.V. Ivanov, A.R.
Khokhlov Numerical simulation of light
propagation through a diffuser // Journal
of Mathematical Sciences. — 2011. — V.
172. — No 6. — P. 782-787.

[31] G.I. Zmievskaya, A.L. Bondareva.
Kinetics of the formation of pores and a
change in the properties of materials in
numerical model //Journal of Surface In-
vestigation: X-Ray, Synchrotron and Neu-
tron Techniques. — 2016. — V. 10. — No 4.
— P. 802-808.

[32] A.V. Ivanov, E.B. Savenkov. Mod-
elirovanie i vizual'noe predstavlenie dina-
miki poverhnosti s podvizhnym kraem na
stacionarnoj nestrukturirovannoj setke
[Simulation and visualization of the dy-
namics of a surface with a movable bound-
ary on a stationary unstructured mesh].
//Scientific Visualization. - 2017. —V. 9. —
No 2. — P. 64–81. [In Russian]

